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Abstract

Additive manufacturing AM - 3D printing - is evolving and is currently ex-

periencing its phase of industrialization. Applications are multiple and some are

starting to have a real impact on the supply chain. With the use of layer-by-layer

additive construction manner, AM changed the way of designing and manufac-

turing parts. AM technologies are planned to be the core of the next generation

of production systems. Still, only few planning and scheduling approaches are

proposed in the literature in order to operate AM systems efficiently.

In this work, the planning, nesting and scheduling problem in additive man-

ufacturing is introduced. The aim is to satisfy the orders received from different

distributed customers by due dates. The rising interest comes as AM’s reaching

a threshold level of maturity and the existing production planning and schedul-

ing approaches have to be adapted and further developed in order to meet the

technical and the organizational requirements of the additive manufacturing

technologies. The mathematical formulation of the problem is presented, and

a heuristic approach is proposed and developed in Python in order to solve it.

The proposed heuristic solution is explained step by step, and illustrated using

a numerical example. Experimental tests using the proposed heuristic are car-

ried out, underlining the importance of planning/scheduling for an optimized

production with AM.
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1. Introduction

Additive Manufacturing (AM) is the process of joining materials to make

parts from 3D model data layer upon layer as opposed to subtractive manufac-

turing technologies. Additive manufacturing takes its roots from rapid proto-

typing developed for creating models and prototype parts. Rapid prototyping is5

known as the first form of creating layer-by-layer a 3D object using Computer-

Aided Design (CAD) [1]. Additive Manufacturing, and despite its existence for

more than three decades, did not gain popularity in industry until very recently.

In fact, the recent fast growth rate of AM among industrials and researchers

in several fields is proof that it has the potential to be an effective technology10

for manufacturing components and final products [2]. Based on its maturity in

some extent, AM becomes today a main technology in some manufacturing con-

texts since it can be used in several application fields, especially in customized

production [3].

Additive manufacturing has its specific features and characteristics that dis-15

tinguish it from traditional technologies, the layer-by-layer method for instance,

which enables AM to manufacture designed parts with complex geometries with-

out using fixtures, tooling, or mold [3]. In addition and as shown in Figure 1,

the inputs of AM machines are only raw materials and the 3D model of the

part converted to an AM format which are loaded into the machine. Finally,20

post-processing operations may also be required in order to improve the quality

of the part.

As a result, these characteristics impact the various processes within a

company: product design [4], manufacturing process, production planning and

scheduling, as well as supply chain and logistics [2]. In contrast, the existing25

methods seem to be insufficient to address the whole range of dynamics, and

therefore, the need for a paradigm shift is necessary to achieve performances
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Figure 1: Additive Manufacturing process

that are realized through the implementation of AM [2].

Because very little research addresses the production planning and schedul-

ing issues in additive manufacturing, to the best of our knowledge, this is the30

first work to address this research question, integrating additive manufacturing

process characteristics such as build-time estimation and nesting problems with

scheduling algorithms.

The following sections are organized as follows: An exhaustive literature re-

view is presented in Section 2, summarizing the major findings and the most35

pertinent research works related to the topic. In Section 3, the production plan-

ning and scheduling problem in additive manufacturing is introduced, and the

relevant mathematical model is presented in section 4. The proposed heuristic

approach and build time estimation model are explained in Section 5. In section

6, a numerical example is provided in order to demonstrate the solution of the40

AM scheduling problem using the proposed heuristic. An experimental study is

conducted in section 7, and a final conclusion is drawn in section 8.

2. Literature Review

Additive manufacturing methods and processes are increasing in terms of

market share and industrial applications such as automotive, aerospace, and45

medical, and this growth is expected to continue over the next few years [5].

The AM processes are very numerous and can be classified according to different

criteria: the material feed stock, energy source, build volume· · · [6]. In terms of

materials processed, plastics are currently leading the AM market, with around
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30,000 machines used in production in 2015 [5]. However, the metal AM market50

is also growing, with over 1500 machines. According to Bikas et al. [5], it is

expected that the metal AM machines will see double-digit percentage growth

in their sales over the next 5 years. In 2014, Frazier [6] reviewed the metal

additive manufacturing technologies, and classified these processes into three

main categories: (i) powder bed systems, (ii) powder feed systems, and (iii)55

wire feed systems. In terms of processes’ energy source, particular focus is given

to laser-based and electron-beam additive manufacturing processes in industrial

applications [5].

Laser-based additive manufacturing (LAM) processes use a laser source of

low to medium power in order to melt, solidify or cure the material [5]. Two60

sub-categories can be distinguished in LAM processes, highly depending on the

material’s phase change mechanism: laser melting and laser polymerization.

The material used in this latter is usually a photosensitive resin, cured upon its

exposure to UV radiation, provided by a low-power laser source. Laser melting

processes are either powder-bed or powder-feed based systems. The laser beam65

is used in this case to melt the material (always in the form of fine powder),

which then cools down and solidifies to form the final part [5]. According to

Bikas et al. [5] classification, the laser melting based AM processes are selective

laser sintering (SLS), selective laser melting (SLM), direct metal laser sintering

(DMLS), laser engineered net shaping (LENS), direct metal deposition (DMD),70

laser powder deposition (LPD) and selective laser cladding (SLC). However,

in this work, only powder-bed laser-based processes are considered. In fact,

compared to the powder-feed laser-based systems, selective laser sintering (SLS),

selective laser melting (SLM), and direct metal laser sintering (DMLS) are not

just some of the most significant AM processes used in industries and research75

centers, but they also have a very similar operating processes with regards to

machine preparation, powder layering, powder melting, and ending operations,

allowing for the construction of a generic build time estimation model for these

processes.

Most recent work literature focuses on improving the process planning for80
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AM. For example, a process planning algorithm was proposed by Zhu et al.

[7], linking hybrid manufacturing technologies and process planning, based on a

hybrid process. This process planning algorithm enables a part to be manufac-

tured while taking into consideration process capabilities, production time and

material consumption. Furthermore, another two resource/material require-85

ments based algorithms were proposed by Habib et al. [8] in order to improve

and optimize the AM process planning. The design stage, including product

and process development for AM, has been a big focus in recent AM research.

Zhang et al. [3] proposed an evaluation method to assess the design from a

process planning perspective in order to help designers improving their designs90

and get more benefits from additive manufacturing technologies. It consists of a

“two-level process planning framework for additive manufacturing” along with

a “two-level evaluation framework for the design in AM” and a set of indicators

in order to assess and help improving the design for AM. Within a case study,

they showed the effectiveness of the proposed frameworks. The impacts that95

AM’s implementation could have on the supply chain, production processes, op-

erations management, and sustainability were hinted by Ashourpour et al. [2].

In their paper, the need of making strategic reconfigurations within production,

distribution and logistics structures was expressed, and a set of recommenda-

tions for doing so were proposed. Also, Kopf et al. [9] proposed an approach100

of production planning system based on the process’s maturity level, but their

study focuses more on maturity assessment using only Selective Laser Melting

(SLM) to demonstrate the method.

A successful implementation of AM technologies into a production environ-

ment also needs an accurate cost and build-time estimation model that allows105

the estimation of the real cost and the processing time of each part, even though

it may be manufactured in the same build job along with other parts of dif-

ferent geometries and dimensions. Rickenbacher et al. [10] investigated the

different cost models proposed in the literature, and showed that by simultane-

ously building up multiple parts, the total manufacturing time as well as the110

set-up time, and therefore the total cost per part can be significantly reduced.

5



This cost-model helps to optimize construct jobs and manufacture parts more

economically using SLM technology. Furthermore, with some adjustments, the

model can be used in the SLS process as well, thus covering most of powder-bed

LAM processes. Zhang & Bernard [11] on the other hand, reviewed the former115

proposed methods for AM build time estimation, and found that most of these

models are neither accurate nor practical for real use in application. In addi-

tion, they are also too complicated and difficult to build, taking into account the

difficulty to get all parameters for most of the models. Thus, Zhang & Bernard

[11] proposed an analytical time estimation method to compensate the lacks in120

previous models. The method is based on the analysis of processing procedure

and the production context. Also, Piili et al. [12] found that by building parts

simultaneously the costs can be reduced by 81% to 92% compared to building

single parts separately, and showed that an optimal utilization of the build plat-

form (optimal placement/nesting solution) can be seen as the main variable the125

user can affect under multiple parts manufacturing context. Indeed, this place-

ment (nesting) optimization in AM is a major key factor for decision making

and build job optimization in the production planning and scheduling in AM

problem.

As the focus of AM becomes increasingly centred on manufacturing func-130

tional parts under a multi-parts production context, the planning and schedul-

ing of parts to be processed on these AM machines becomes highly important

in order to reduce time and cost. Therefore, the placement (nesting) of parts

into the build platform becomes a sub-problem in the AM scheduling one, in

order to optimize build jobs and machine utilization, but also to ensure the135

quality of each part in the job. However, little research has been conducted

to address the planning and scheduling issues in additive manufacturing. Li et

al. [13] clearly stated in their paper, that this topic has not yet been studied

in literature: “However, to the best of the author’s knowledge, no research has

been conducted to address planning of production with AM technologies” [13].140

Zhang et al. [14] also reported that “currently, due to the insufficient matu-

rity of manufacturing functional parts and little research attention paid on the
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process planning or scheduling in AM, only a few solutions were proposed in

literature to deal with the part placement problem” [13].

Li et al. [13] introduced the production planning in additive manufacturing145

problem for the first time in literature, and proposed a mathematical model

to formulate it. The aim of their study was to find the optimum allocation of

the different parts into a set of different machines with different specifications

(processing speed, unit time cost· · ·), while minimizing the average production

cost per volume of material. In their study, only one type of material was150

considered, no nesting problem was integrated, and no due dates were taken into

account for fulfilling orders. Li et al. [13] also proposed two heuristic procedures

called “best-fit” and “adapted best-fit” rules, along with a numerical example

comparing the optimal and heuristic solutions. Li et al. [13] also carried out

a computational study to evaluate the performance of the proposed heuristics155

and demonstrated the necessity of developing specific planning and scheduling

techniques for additive manufacturing processes.

3. Problem description

Focus will be given to multi-parts production planning and scheduling with

AM machines, considering orders delivery times in order to fulfil demands re-160

ceived from customers by due date. The AM processes considered in this study

are laser AM processes (LAM), including selective laser sintering (SLS), selective

laser melting (SLM), and direct metal laser sintering (DMLS).

The production with powder-bed based LAM machines is operated on a job

by job basis [13], with the possibility of simultaneously building up multiple165

parts with similar or different geometries in the same job, in order to reduce the

total manufacturing time and cost. Before starting each job, a set of machine

preparation operations are needed, such as loading of the STL files, adjustments

of the machine, filling of powder materials, laser generation, scanning head po-

sitioning, and filling-up the build chamber with a tightly controlled atmosphere170

of inert gas. These preparation operations may vary from one machine to an-
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other. After that, the job can be started. The laser selectively fuses or melts

powdered material by scanning cross-sections generated from the sliced STL of

SLC files. After each scanned cross-section, the powder bed (which is controlled

by a piston) is lowered by one layer thickness and a new powder layer is ap-175

plied using a rotating roller to spread the powder evenly. Powder layering and

cross-section scanning operations are repeated alternately until all the parts are

completed. Finally, parts are removed from the build chamber once the job is

finished and all powder is removed from the parts. The machine is then cleaned

and prepared to receive the next job. Some other post-processing operations180

may also be required in order to improve the quality of parts.

As illustrated in Figure 2, the problem considered in this study consists of

a set of customers’ orders with fixed delivery times. These are to be performed

on a set of identical AM parallel machines, while minimizing violation of due

dates and maximizing machine utilization.185

Figure 2: Problem description

The customers’ orders will be dispersed on a part by part basis using due

date, height, production area, and volume. A first sub-problem is how to cluster

the set of n parts (i = 1, . . . , n) with different due dates di, heights hi, produc-
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tion area ai, and volume (ai × hi), from customers, and to allocate them to a

set of l jobs (j = 1, . . . , l). Each job j consists of one single operation and has190

a deterministic processing time pj and a due date dj . Next, the sub-problem

is how to optimally place these parts into the specified build space (maximum

production area and maximum supported height), taking into consideration the

processing time of each job and its due date.

Once the jobs are formed, the objective of the second sub-problem is to195

schedule the l jobs on a set of m (k = 1, . . . ,m) identical parallel additive

manufacturing machines. These AM machines have the same dimensions of the

build envelope (maximum production area A) and the same layer thickness and

build speed. It is also assumed that all jobs are available at time zero and ready

to be processed on these machines. Each AM machine can process only one job200

at a time, and one job cannot be processed on different machines at the same

time. The scheduling problem considered here is about finding an assignment

of all jobs to the AM machines, and the schedule (sequencing) of all jobs on

all machines that minimizes the total tardiness. The tardiness Tj of a job j is

defined by Tj = max
{

0, cj − dj
}
,∀j = 1, . . . , l, where cj is the completion time205

of the job j.

A different combination of parts in the same job will lead to different pro-

cessing times, due dates, and machine utilization indicators (Figure 3). This

would also affect the scheduling of the l jobs later in the second step of the

problem solving. The processing time of a job is mainly influenced by the maxi-210

mum height of parts assigned to the job, as well as by the total parts production

area and volume. Also, the due date of each job is defined as the minimum due

date of parts assigned to the job. Machine utilization is defined by two main

indicators, namely the minimum compactness C defined as the minimum cov-

erage of the build area, and the build height difference of parts assigned to the215

job (difference of Z-heights) [11], [14].

The following example provides an illustration of how different combinations

of parts would affect the job-related parameters and schedule: let’s consider

eight (8) different parts with different heights, production areas, volumes, and
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Figure 3: Parts clustering in jobs

due dates, as presented in Table 1. These parts are to be scheduled on one AM220

machine, and therefore, parts are clustered into two jobs of four parts.

Table 1: Example of 8 parts with their specifications

Part Pi P1 P2 P3 P4 P5 P6 P7 P8

Height (mm) 64 77 145 155 75 65 165 175

Prod. area (mm2) 2475 2700 2750 2700 8000 7500 8550 6500

Volume (cm3) 158.4 207.9 398.75 418.5 600 487.5 1410.75 1137.5

Due date (h) 10 10 30 30 10 10 30 30

Two cases are generated:

• in the first case, parts are clustered into 2 jobs : Job1 = {P1, P2, P5, P6}

and Job2 = {P3, P4, P7, P8}. The results presented in Table 2 show that

both Job1 and Job2 can be successfully scheduled on a single AM machine225

with respect to their due dates, with a processing time of 7.9 hours and

18.09 hours for the two jobs respectively.

• in the second case, and by simply swapping part P7 and part P2 between

the two previous jobs, all the parameters including the processing time, the

machine occupation indicators, and the jobs’ due dates change as shown230

in Table 3, and both jobs are tardy, with a total tardiness of 25.76 hours.
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Table 2: Results of case 1

Job Parts Processing Area Z-height Due date Completion Tardy/

time (h) coverage % difference (h) time (h) nontardy

Job1 P1, P2, P5, P6 7.9 51.69 4.33 10 7.9 nontardy

Job2 P3, P4, P7, P8 18.09 51.25 10.00 30 26.99 nontardy

Table 3: Results of case 2

Job Parts Processing Area Z-height Due date Completion Tardy/

time (h) coverage % difference (h) time (h) nontardy

Job1 P1, P5, P6, P7 15.35 66.31 33.67 10 15.35 tardy

Job2 P2, P3, P4, P8 14.06 36.63 32.67 10 30.41 tardy

To solve this problem, the following assumptions are made. Only one type

of material is considered for all parts. The parts’ geometry and material volume

considered are not the real geometries and material volumes. In order to re-

duce the complexity of the nesting problem, parts are represented by their hull235

boxes, and the material volumes considered are the boxes’ volumes. Thus, the

considered production area of each part is the projection of its hull box onto the

build platform. The parts’ build orientations are predefined and fixed according

to each part’s optimal build orientation that ensures its quality. Hence, parts

can only pivot on their build axis or move horizontally on the build platform.240

4. Mathematical model

The problem is composed of two sub-problems:

The first sub-problem. is about how to cluster the set of n parts (i = 1, . . . , n)

with different due dates, heights, and production areas, and then allocate them
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to a set of l jobs (j = 1, . . . , l), while considering nesting and placement issues.245

The second sub-problem. is about how to schedule the set of l (j = 1, . . . , l)

previously formed jobs on a set of m (k = 1, . . . ,m) identical parallel AM

machines.

4.1. Sub-problem 1: part/job assignment

We introduce the variable xij as the binary variable that takes the value 1 if250

the part i (i = 1, . . . , n) is assigned to job j (j = 1, . . . , l), and 0 otherwise. The

set Ij defines the sub-set of parts assigned to job j. The problem of clustering

the parts into a set of jobs is a binary integer quadratic programming problem

(BIQP), and is formulated as follows:

min

n∑
i=2

i−1∑
i′=1

(di − di′)xijxi′j ,∀j = 1, . . . , l (1)

subject to255

l∑
j=1

xij = 1,∀i = 1, . . . , n (2)

n∑
i=1

aixij ≤ A,∀j = 1, . . . , l (3)

pj ≤ min
i∈Ij

(di),∀j = 1, . . . , l (4)

dj = min
i∈Ij

(di), ∀j = 1, . . . , l (5)

n∑
i=2

i−1∑
i′=1

overlap(xij , xi′j) = 0, ∀j = 1, . . . , l (6)

n∑
i=1

aixij/A ≥ C,∀j = 1, . . . , l (7)

xij ∈ {0, 1},∀i = 1, . . . , n, j = 1, . . . , l (8)

12



In the above formulation, equation 1 represents the minimization of the total

differences of due dates between parts belonging to the same job. Constraint 2

ensures that each part must be assigned to one and only one job. Constraint 3

is needed to ensure that the total area of parts assigned to the same job must

be smaller than the maximum available production area of the AM machine.260

Constraint 4 guarantees that the processing time of each job must be smaller

than the minimum due date of parts assigned to the job. Constraint 5 ensures

that the due date of each job must be equal to the minimum due date of parts

assigned to the job. Constraint 6 prevents the overlapping of the bounding boxes

of parts’ projection areas, where overlap() is an external function using the265

Axis Aligned Bounding Box (AABB) method [15]. Constraint 7 ensures that the

build platform area coverage must be greater than the minimum compactness

required for the machine. Finally, constraint 8 defines the boundary values for

all variables.

4.2. Sub-problem 2: job scheduling270

Once the jobs are formed, a second part of the problem consists of finding the

optimal assignment and schedule of the l jobs on the m machines. We introduce

the following binary variables: yjk takes the value 1 if the job j (j = 1, . . . , l)

is processed in machine k (k = 1, . . . ,m) ; zjj′ takes the value 1 if the job j is

scheduled directly before the job j′ on the same machine ; z0j and zj,l+1 take275

the value 1 if the job j is respectively the first and the last job on the same

machine. The proposed mixed integer linear programming (MILP) model of

the second sub-problem adapted from Biskup et al. [16] can be described as

follows:

min
m∑

k=1

l∑
j=1

Tjyjk (9)

where Tj = max
{

0, cj − dj
}

is the tardiness of the job j.280

subject to
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min
m∑

k=1

yjk −Wj = 0,∀j = 1, . . . , l (10)

where Wj takes the value 1 if
l∑

j=1

xij ≥ 1,∀i = 1, . . . , n, and 0 otherwise.

l∑
j′=0,j′ 6=j

zj′j = 1,∀j = 1, . . . , l (11)

l+1∑
j′=1,j′ 6=j

zjj′ = 1,∀j = 1, . . . , l (12)

l∑
j=1

z0j = m, ∀j = 1, . . . , l (13)

cj′ ≥ cj + pj′ −M(1− zjj′),∀j, j′ = 1, . . . , l and j 6= j′ (14)

In this formulation, equation 9 represents the objective of the minimization

of the total tardiness. Constraint 10 states that if any part is assigned to job

j, j must be assigned to one and only one machine. Constraint 11 ensures that285

each job is preceded directly by another job or by the fictive job 0 if it is the 

first job scheduled on a machine. Constraint 12 guarantees that each job is 

directly followed by another job or by the fictive job l + 1 if it is the last job 

scheduled on a machine. Constraint 13 ensures that at most m machines are

used. Constraint 14 ensures that a machine can process at most one job at a290

time, where M is the big M .

5. Proposed heuristic

In this section, we propose a new heuristic approach for the production

planning and scheduling problem in AM. The proposed heuristic is implemented

in Python, and the pseudo-code of the main loops in the proposed heuristic is295

presented in Algorithm 1. The pseudo-code of the main function used in the

heuristic for the selection of parts to be assigned to the different jobs is presented

in Algorithm 2.
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As described in the previous section, the main objective is to fulfil demands

received from distributed customers by due date, under a multi-part production300

context using additive manufacturing machines. For this main reason, the earli-

est due date scheduling rule (EDD) is integrated in the heuristic. In the earliest

due date (EDD) rule, the job which has the nearest due date enters service first,

in other words, EDD-order is an order based on due date, and the sequence of

remaining jobs is sorted based on a non-decreasing due date order. Further-305

more, EDD rule is simple, fast, and optimal if the objective is to minimize the

maximum tardiness, and it performs very well with regards to due dates, which

perfectly matches the scheduling objective.

In order to clearly explain the proposed heuristic, a set of terms need to

be defined. A part is called an assigned part once it has been assigned to a310

temporary job, a scheduled part is a part that has already been assigned to a

scheduled job, and an unscheduled part, is a part which has not been assigned

yet to a scheduled job. A temporary job is a job used to regroup the distributed

parts of each machine’s available part list and form the final scheduled jobs. The

machine’s list of available parts is a list of candidate parts that are susceptible315

to be scheduled on machine k. And the machine’s list of scheduled jobs is a list

of jobs, where a position in the schedule is assigned to each job.

First, the list of unscheduled parts is sorted based on a non-decreasing due

date, and an empty temporary job is created on each of the m AM parallel

machines. A list of available parts is determined for the first machine from320

those in list of unscheduled parts. The main criterion used for selection in this

first step is the available area (remaining area) in the machine’s build platform.

After that, parts are selected one by one and assigned to the temporary job.

There are two possible cases for part selection. The first one is when the

temporary job is empty: in this case, the first part in the list of available parts325

is selected, as it is the part with the earliest due date (list of unscheduled parts

already sorted). The second case is when at least one part is already assigned

to the temporary job. In this case, the selected part would be the one with

the earliest due date, and which if added to the job, the processing time of the

15



temporary job would not exceed the job’s due date (the minimum due date of330

parts assigned to the temporary job).

Algorithm 1 Main heuristic algorithm

1: repeat

2: Sort unscheduled part list according with earliest due date rule

3: for k=1 to m do

4: Ensure a temporary job on machine k

5: end for

6: k=1

7: repeat

8: for i=1 to n do

9: if Available area in machine k is greater than the production area ai

of part i then

10: Add part i to the list of available parts for machine k

11: end if

12: end for

13: repeat

14: Call: part selection(machine k) (Algorithm 2)

15: Update available area in machine k

16: Update list of available parts for machine k

17: until List of available parts for machine k is not empty

18: Remove assigned parts from list of unscheduled parts

19: Add a new additive manufacturing machine k = k + 1

20: until k ≤ m

21: for k=1 to m do

22: Move temporary job of machine k to the list of scheduled jobs of ma-

chine k

23: Clear all temporary jobs

24: end for

25: until List of unscheduled parts is not empty

16



Algorithm 2 Function part selection(machine k) algorithm

1: if temporary job on machine k is empty then

2: add part i to temporary job of machine k

3: remove part i from list of available parts for machine k

4: else

5: for i in list of available parts for machine k do

6: add part i to temporary job of machine k

7: calculate the processing time pj of temporary job of machine k

8: for i in temporary job of machine k do

9: EDD = minimum due date of parts in temporary job of machine k

10: end for

11: if pj ≤ EDD then

12: remove part i from list of available parts for machine k

13: else

14: remove part i from temporary job of machine k

15: end if

16: end for

17: end if

The available area on machine k is updated every time a part is added to the 

machine’s temporary job, and therefore, parts assigned to temporary job and

those who do not satisfy the processing time condition are removed from list of

335 available parts for machine k. The list of available parts is also updated after 

each assignment according to the updated build platform’s available area, and 

the assigned parts are removed from list of unscheduled parts to ensure that 

each part is assigned to exactly one machine. This cycle continues until there is 

no part available for this machine’s temporary job. In the next step, parts are

assigned to each subsequent machine’s temporary job in the same way.340

Once all the m machine’s temporary jobs are constructed, these latter are to

be added to the first position in the list of scheduled jobs of each relevant AM

machine, and all machines’ temporary jobs are cleared. The position of each job
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in the list of scheduled jobs represents its position in the schedule of the relevant

AM machine. The whole cycle continues, and other iterations are made until345

all parts are scheduled, and all scheduled jobs are ordered by iteration on the

list of scheduled jobs of each AM machine.

5.1. Calculation of processing time: build time estimation

As seen in section 2, an accurate estimation of the build time in AM is a

key factor for an optimized production with additive manufacturing. Indeed, in350

our AM scheduling problem, the estimation of the processing time for all parts 

in the job is important to optimize the job’s construction with respect to due 

dates. In the following, the proposed build time estimation model used for jobs’ 

processing time estimation is described.

pj = Czmax max
i∈Ij
{zi}+ Ca

∑
i∈Ij

ai + Cv

∑
i∈Ij

vi,∀j = 1, . . . , l (15)

where pj is the processing time of job j, Ij is the set of parts assigned to job j,355

zi is the height of part i, ai is the production area of part i, vi is the material

volume of part i, Czmax is the maximum height constant, Ca is the production

area constant and Cv is the material volume constant.

In our AM scheduling problem, only powder layering and cross-section scan-

ning operations are considered for the estimation of the job’s processing time.360

Time spent on machine preparation and post processing operations is integrated

directly in the time spent on setting up a new job, as it does not vary too much

from a job to another.

The processing time of a job j will be highly depending on the maximum

height zmax of parts in the job. In fact, the more the parts in the job will be of365

an important height, the more the time spent on generating powder layers will

be significant, especially when the layer thickness is smaller. The time spent

on powder scanning is expressed in terms of parts’ total production area and

material volume (Ca

∑
i∈Ij ai + Cv

∑
i∈Ij vi). The constants Czmax , Ca and Cv

will depend more on the AM machine specifications (the layer thickness, laser370

diameter, laser scanning speed, hatching space. . . ).

18



 

6. Numerical example

In this section, a numerical example is provided in order to demonstrate

the solution of the AM production planning and scheduling problem using the

proposed heuristic. The example problem consists of a set of twenty (20) parts375

with different dimensions, heights, production areas, material volumes, and due

dates. These parts are to be scheduled on a set of m LAM machines. The

parts’ dimensions were generated randomly with respect to the machine’s build

envelope dimensions (250 × 250 × 250 mm), while the part’s due dates were

generated randomly within the range of 8 to 72 hours. The LAM machine380

parameters and the parts’ specifications are presented in Table 4 and Table 5, 

respectively.

The numerical example problem is solved using the proposed heuristic under

three cases: with a single machine (m = 1), two machines (m = 2), and three

machines (m = 3). Also, it is assumed that all jobs are ready at time zero, and385

the time spent on setting up each new job (including machine preparation and

post processing operations) is fixed to 1 hour.

Table 4: Machine specifications

Layer Laser Hatching Laser Speed Build envelope Build time

thickness diameter distance head (contour/edge) (L×W ×H) per layer

0.1 mm 0.6 mm 0.3 mm single 900 mm/s 250× 250× 250 mm 12 s/layer

The part/job assignment was the same under the three cases, and as shown

in Table 6, a total of six jobs were generated in order to regroup the twenty

given parts. For example Job 1 was formed to produce P1, P3, P4, P5, P6 and390

P17, where a total of 15250 mm2 were utilized from a 62500 mm2 of the total

available production area, with a maximum height of parts of 140 mm. The due

date of the job is 8 hours and its processing time is estimated at 7.93 hours.

The jobs were ordered according to their due dates, and as it can be seen from
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Table 5: Parts related data

Part i X (mm) Y (mm) Height (mm) Area (mm2) Vol. (cm3) Due date (hours)

P1 50 100 140 5000 700.0 24

P2 190 190 80 36100 2888.0 16

P3 15 70 50 1050 52.5 8

P4 20 100 90 2000 180.0 16

P5 100 25 20 2500 50.0 8

P6 30 33 88 990 87.1 48

P7 50 100 100 5000 500.0 24

P8 30 60 150 1800 270.0 24

P9 190 190 54 36100 1949.4 30

P10 20 100 147 2000 294.0 16

P11 100 10 111 1000 111.0 32

P12 47 30 120 1410 169.2 80

P13 80 60 50 4800 240.0 40

P14 45 28 190 1260 239.4 48

P15 35 115 90 4025 362.3 88

P16 90 95 90 8550 769.5 48

P17 35 150 45 5250 236.3 72

P18 69 45 120 3105 372.6 24

P19 112 80 180 8960 1612.8 18

P20 55 75 95 4125 391.9 72

Table 6, no job’s processing time exceeds its own due date, which means that so395

far, the proposed heuristic fills the gap in the EDD rule. This latter performs

well with regards to due dates, but if not, it is because the rule does not consider

the job processing time.

The results of the three cases are presented respectively in Table 7, Table 8,
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Table 6: Obtained jobs with their assigned parts and parameters

Job j Scheduled Max height Total production Due date Processing

parts (mm) area (mm2) (hours) time (hours)

J1 P1, P3, P4, P5, P6, P17 140 15250 8 7.93

J2 P2, P10 147 36500 16 15.65

J3 P7, P15, P18, P19 180 21030 18 17.70

J4 P8, P9, P12, P13, P16 150 53709 24 17.33

J5 P11, P14 190 12025 32 12.41

J6 P20 95 3025 72 4.66

and Table 9. The tables contain the assignment of each job to the relevant AM400

machine, and its position in the schedule. The release date and the completion

time of all jobs are also provided, along with the tardiness of each tardy job.

Case 1: m = 1

As it can be seen from Table 7, in the one single machine case, only Job 1 =

405 {P 1, P 3, P 4, P 5, P 6, P 17} is scheduled successfully, and as it is scheduled in the 

first position of M1 schedule, it starts at time 0, and will be delivered after 7.93

hours, that is 5 minutes before its due date. The rest of the five jobs (J2, J3,

J4, J5, and J6) are late, which leave us with 83% of late jobs, with a total

tardiness of 123 hours, and only 8 parts from 20 (40%) are delivered in time.

Case 2: m = 2410

As can be seen from Table 8, when using two machines, the set of six jobs

is divided into two groups of three jobs for each machine as follows: M1 =

{J1, J3, J5}, and M2 = {J2, J4, J6}. The late jobs are J3, J5, and J4, with a

total tardiness of 27 hours.

Case 3: m = 3415

By adding a third machine (M3), the obtained job/machine assignment will
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be as follows: M1 = {J1, J4}, M2 = {J2, J5}, and M3 = {J3, J6} (Table 9).

In this case, only one job (J4) is late, with a tardiness of 2.26 hours. Which

means that the total tardiness has been minimized by 98% comparing to the

single machine case. Furthermore, it is to be noticed that even though Job 4 is420

late comparing to its due date, only Part 8 is considered late once the job has

finished, as parts belonging to the same job don’t necessarily share the same

job’s due date (see Table 5). In the end, 19 from 20 parts (95%) are delivered

at time.

Table 7: Scheduling with one machine (M1)

Position Job j Machine Release Completion Due date Tardy / Tardiness

date (hours) time (hours) (hours) Nontardy (hours)

1 J1 M1 0.00 7.93 8.00 Nontardy 0.00

2 J2 M1 8.93 24.58 16.00 Tardy 8.58

3 J3 M1 25.58 43.28 18.00 Tardy 25.28

4 J4 M1 44.28 61.60 24.00 Tardy 37.6

5 J5 M1 62.60 75.01 32.00 Tardy 43.01

6 J6 M1 76.01 80.67 72.00 Tardy 8.67

Figure 4 shows the total production area utilized by each of the six jobs
425

compared to the machines’ total available area. As it can be seen from the

figure, no job’s production area exceeds the available area on the machine. The

job with the highest area coverage is Job 4 with about 86% of utilized area, and

the job with the lowest area coverage is Job 6, with 5% of build area coverage.

Figure 5, shows the configuration of each of the six jobs obtained previously. It430

illustrates the allocation of the parts’ bounding boxes projection areas onto the

build platform.
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Table 8: Scheduling with two machines (M1 and M2)

Position Job j Machine Release Completion Due date Tardy / Tardiness

date (hours) time (hours) (hours) Nontardy (hours)

1 J1 M1 0.00 7.93 8.00 Nontardy 0.00

2 J3 M1 8.93 26.63 18.00 Tardy 8.63

3 J5 M1 27.63 40.03 32.00 Tardy 8.03

1 J2 M2 0.00 15.65 16.00 Nontardy 0.00

2 J4 M2 16.65 33.98 24.00 Tardy 9.98

3 J6 M2 34.98 39.64 72.00 Nontardy 0.00

Table 9: Scheduling with three machines (M1, M2 and M3)

Position Job j Machine Release Completion Due date Tardy / Tardiness

date (hours) time (hours) (hours) Nontardy (hours)

1 J1 M1 0 7.93 8 Nontardy 0

2 J4 M1 8.93 26.26 24 Tardy 2.26

1 J2 M2 0 15.65 16 Nontardy 0

2 J5 M2 16.65 29.06 32 Nontardy 0

1 J3 M3 0 17., 7 18 Nontardy 0

2 J6 M3 18.7 23.36 72 Nontardy 0

7. Simulation results

This section reports the experimental tests results of the proposed heuris-

tic. In these tests, a number of instances were generated. An instance is a435

combination of a given number of parts P#, and a number of machines M#.

In other words, P10M2 for example, refers to the case were 10 different parts

are to be scheduled on 2 additive manufacturing machines. For each instance,
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Figure 4: Total production areas of the utilized jobs

a different combination of parts, with different heights, production areas, and

material volumes were generated randomly with respect to the build envelop440

dimensions (250×250×250 mm). The due dates were also generated randomly

within the range of 8 to 160 hours.

Each instance is generated 20 times, and as shown in Table 10, three cases are

considered: (i) when the percentage of jobs scheduled successfully is at around

445 50%, (ii) more than 75%, and (iii) 100%. In the same table, the total number of 

formed jobs, the average number of assigned parts per job, the average number

of assigned jobs per machine, and the number of tardy jobs is reported for each 

instance. For example, in the case of scheduling 20 parts on m AM machines, 

the parts are clustered into 7 different jobs, and as shown in Table 10, 4 jobs

from 7 (57.14%) are delivered at time when using 2 AM machines (P20M2),450

while 6 jobs from 7 (85.71%) are delivered at time by adding a third machine

(P20M3), and in order to achieve all the 7 jobs at time, 4 AM machines are

needed (P20M4).

24



Figure 5: Jobs’ configuration

Figure 6 shows the number of machines required to produce different quan-

tities of parts with respect to due dates. This corresponds to the cases where455

100% of jobs are scheduled successfully with regards to their due dates (Table

10). The average number of jobs required to regroup the different sets of parts

for each case is also illustrated in Figure 6.

As it can be seen from Figure 6, only 2 to 4 machines are needed in order

to produce small quantities of parts (from 10 to 30) within the fixed range of460

due dates (one week), about 4 to 5 machines for batches of 50 parts, while 9

to 10 AM machines are needed to achieve the 100 parts in one week. On the

other hand, the number of machines will increase very considerably beyond the

100 parts, up to 25 machines in order to produce 200 parts in a period of one

week. Taking into consideration the high cost in AM, mainly driven by the465
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investment cost of the AM machines, it is a matter of a trade-off between this

latter on one hand, and the production objectives (a high production rate and

a high customer satisfaction rate) on the other hand. In order to illustrate this,

the 200 parts case is detailed in Table 11, and Figure 7. The instances from

P200M10 to P200M26 are presented in the table, along with the corresponding470

number and percentage of tardy jobs.

Figure 6: Required number of machines per number of parts

As it can be seen from Figure 7, 45% of jobs are tardy when using 10

machines for the 200 parts production in one week, and the number of tardy

jobs can be reduced to 30% when using 14 to 15 AM machines. While more than

10 other machines are needed in order to achieve the 0% of tardy jobs. This475

means that the number of machines should be doubled in order to compensate

the remaining 30% of tardy jobs. Which is the equivalent of an investment of

more than 2.5 million euros.

8. Conclusion

In this work, the production planning and scheduling of identical parallel480

AM machines was considered. Manufacturing orders received from distributed
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Figure 7: Percentage of tardy jobs per number of machines (#P200)
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The

 

objective

 

was

 

to

 

fulfil

 

the

 

dif-ferent orders by due dates and to minimize the total tardiness, while maximizing485

machine utilization. To do so, we first reviewed the existing literature related to

the topic and found that little research attention is paid to address this research

question. However, all pertinent information was gathered and integrated in the

solution building mechanism, including the AM processes specifications, existing

cost and build time estimation models, nesting methods, and existing schedul-490

ing methods and heuristics approaches. After that, we defined and explained

the problem characteristics, which differentiates it from the classical machines

scheduling problems. Then, we presented the mathematical formulation of the

problem and proposed a heuristic procedure in order to solve it. The heuris-

tic approach was build based on the earliest due date (EDD) rule, developed495

in Python and explained step by step through some numerical demonstrative

cases. In the end, we conducted some experimental tests, showing the need of

developing proper additive manufacturing planning and scheduling methods, in

order to meet the technical and the organizational requirements of AM.
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Table 10: Data and results of the experimental tests

Instance Number Number of Number Average Av. Jobs/ Tardy Succeeded % of

of parts machines of jobs Parts/job machines jobs jobs success

P05M1 5 1 2 3 2 1 1 50.00

P05M2 5 2 2 3 1 0 2 100.00

P05M3 5 3 2 3 1 0 2 100.00

P10M1 10 1 4 3 4 2 2 50.00

P10M2 10 2 4 3 2 1 3 75.00

P10M3 10 3 4 3 1 0 4 100.00

P20M2 20 2 7 3 4 3 4 57.14

P20M3 20 3 7 3 2 1 6 85.71

P20M4 20 4 7 3 2 0 7 100.00

P30M2 30 2 9 3 5 4 5 55.56

P30M3 30 3 9 3 3 3 8 88.89

P30M4 30 4 9 3 2 0 9 100.,00

P50M3 50 3 13 4 4 5 8 61.54

P50M4 50 4 13 4 3 2 11 84.62

P50M5 50 5 13 4 3 0 13 100.00

P70M4 70 4 19 4 5 9 10 52.63

P70M6 70 6 19 4 3 4 15 78.95

P70M8 70 8 19 4 2 1 18 94.74

P100M5 100 5 25 4 5 12 13 52.00

P100M6 100 6 25 4 4 6 19 76.,00

P100M10 100 10 25 4 3 1 24 96.00

P150M8 150 8 40 4 5 17 23 57.50

P150M10 150 10 40 4 4 9 31 77.,50

P150M17 150 17 40 4 2 1 39 97.50

P200M12 200 12 54 4 5 25 29 53.,70

P200M16 200 16 54 4 3 13 43 79.63

P200M25 200 25 54 4 2 3 51 94.44
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Table 11: 200 parts case data and results

# of machines 10 11 12 13 14 15 16 17 18

# of tardy jobs 25 23 21 19 18 16 13 12 11

% of tardy jobs 46.3 42.6 38.9 35.2 33.3 29.6 24.1 22.2 20.4

# of machines 19 20 21 22 23 24 25 26

# of tardy jobs 10 10 9 8 7 7 5 3

% of tardy jobs 18.5 18.5 16.7 14.8 13.0 13.0 5.6 5.6
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Highlights

• We investigate the problem of production planning and scheduling using

Additive Manufacturing

• We propose a two-phase approach based on MILP.

• We develop a heuristic approach to solve the problem.

• The experiments confirm the importance of planning and scheduling for

an optimized production with additive manufacturing.
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